MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 11 Steel vs. S40910 Stainless Steel

Both ASTM A387 grade 11 steel and S40910 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 11 steel and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
23
Fatigue Strength, MPa 200 to 250
130
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Shear Strength, MPa 320 to 390
270
Tensile Strength: Ultimate (UTS), MPa 500 to 600
430
Tensile Strength: Yield (Proof), MPa 270 to 350
190

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 430
710
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 39
26
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.6
2.0
Embodied Energy, MJ/kg 21
28
Embodied Water, L/kg 53
94

Common Calculations

PREN (Pitting Resistance) 3.1
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100 to 130
80
Resilience: Unit (Modulus of Resilience), kJ/m3 200 to 320
94
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18 to 21
16
Strength to Weight: Bending, points 18 to 20
16
Thermal Diffusivity, mm2/s 11
6.9
Thermal Shock Resistance, points 15 to 18
16

Alloy Composition

Carbon (C), % 0.050 to 0.17
0 to 0.030
Chromium (Cr), % 1.0 to 1.5
10.5 to 11.7
Iron (Fe), % 96.2 to 97.6
85 to 89.5
Manganese (Mn), % 0.4 to 0.65
0 to 1.0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.17
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0.5 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.020
Titanium (Ti), % 0
0 to 0.5