MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 12 Steel vs. EN 1.4958 Stainless Steel

Both ASTM A387 grade 12 steel and EN 1.4958 stainless steel are iron alloys. They have 48% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 12 steel and the bottom bar is EN 1.4958 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
40
Fatigue Strength, MPa 190 to 230
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 300 to 330
430
Tensile Strength: Ultimate (UTS), MPa 470 to 520
630
Tensile Strength: Yield (Proof), MPa 260 to 310
190

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 430
1090
Melting Completion (Liquidus), °C 1470
1400
Melting Onset (Solidus), °C 1420
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 44
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.6
5.3
Embodied Energy, MJ/kg 21
75
Embodied Water, L/kg 51
200

Common Calculations

PREN (Pitting Resistance) 2.7
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 110
190
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 250
95
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16 to 18
22
Strength to Weight: Bending, points 17 to 18
20
Thermal Diffusivity, mm2/s 12
3.2
Thermal Shock Resistance, points 14 to 15
15

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.5
Carbon (C), % 0.050 to 0.17
0.030 to 0.080
Chromium (Cr), % 0.8 to 1.2
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 97 to 98.2
41.1 to 50.6
Manganese (Mn), % 0.4 to 0.65
0 to 1.5
Molybdenum (Mo), % 0.45 to 0.6
0
Nickel (Ni), % 0
30 to 32.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.025
0 to 0.015
Silicon (Si), % 0.15 to 0.4
0 to 0.7
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0.2 to 0.5