ASTM A387 Grade 12 Steel vs. EN 1.5414 Steel
Both ASTM A387 grade 12 steel and EN 1.5414 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.
For each property being compared, the top bar is ASTM A387 grade 12 steel and the bottom bar is EN 1.5414 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 140 to 160 | |
170 to 180 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 25 | |
22 |
Fatigue Strength, MPa | 190 to 230 | |
250 to 270 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Shear Strength, MPa | 300 to 330 | |
350 to 370 |
Tensile Strength: Ultimate (UTS), MPa | 470 to 520 | |
550 to 580 |
Tensile Strength: Yield (Proof), MPa | 260 to 310 | |
350 to 380 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 430 | |
410 |
Melting Completion (Liquidus), °C | 1470 | |
1470 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 44 | |
44 |
Thermal Expansion, µm/m-K | 13 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
8.4 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.8 | |
2.6 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.6 | |
1.6 |
Embodied Energy, MJ/kg | 21 | |
21 |
Embodied Water, L/kg | 51 | |
50 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 98 to 110 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 180 to 250 | |
320 to 370 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 16 to 18 | |
19 to 20 |
Strength to Weight: Bending, points | 17 to 18 | |
19 to 20 |
Thermal Diffusivity, mm2/s | 12 | |
12 |
Thermal Shock Resistance, points | 14 to 15 | |
16 to 17 |
Alloy Composition
Carbon (C), % | 0.050 to 0.17 | |
0 to 0.2 |
Chromium (Cr), % | 0.8 to 1.2 | |
0 to 0.3 |
Copper (Cu), % | 0 | |
0 to 0.3 |
Iron (Fe), % | 97 to 98.2 | |
96.4 to 98.7 |
Manganese (Mn), % | 0.4 to 0.65 | |
0.9 to 1.5 |
Molybdenum (Mo), % | 0.45 to 0.6 | |
0.45 to 0.6 |
Nickel (Ni), % | 0 | |
0 to 0.3 |
Nitrogen (N), % | 0 | |
0 to 0.012 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.015 |
Silicon (Si), % | 0.15 to 0.4 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.025 | |
0 to 0.0050 |