MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 12 Steel vs. Grade C-3 Titanium

ASTM A387 grade 12 steel belongs to the iron alloys classification, while grade C-3 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 12 steel and the bottom bar is grade C-3 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 160
200
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
13
Fatigue Strength, MPa 190 to 230
260
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 470 to 520
500
Tensile Strength: Yield (Proof), MPa 260 to 310
430

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 430
320
Melting Completion (Liquidus), °C 1470
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 44
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.8
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.6
31
Embodied Energy, MJ/kg 21
510
Embodied Water, L/kg 51
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 110
65
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 250
880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 16 to 18
31
Strength to Weight: Bending, points 17 to 18
31
Thermal Diffusivity, mm2/s 12
8.5
Thermal Shock Resistance, points 14 to 15
39

Alloy Composition

Carbon (C), % 0.050 to 0.17
0 to 0.1
Chromium (Cr), % 0.8 to 1.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 97 to 98.2
0 to 0.25
Manganese (Mn), % 0.4 to 0.65
0
Molybdenum (Mo), % 0.45 to 0.6
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.15 to 0.4
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
98.8 to 100
Residuals, % 0
0 to 0.4