MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 2 Steel vs. 2030 Aluminum

ASTM A387 grade 2 steel belongs to the iron alloys classification, while 2030 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 2 steel and the bottom bar is 2030 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 25
5.6 to 8.0
Fatigue Strength, MPa 190 to 250
91 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 300 to 350
220 to 250
Tensile Strength: Ultimate (UTS), MPa 470 to 550
370 to 420
Tensile Strength: Yield (Proof), MPa 260 to 350
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 420
190
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1420
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 45
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
34
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
99

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
10
Density, g/cm3 7.9
3.1
Embodied Carbon, kg CO2/kg material 1.6
8.0
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 50
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
390 to 530
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 16 to 20
33 to 38
Strength to Weight: Bending, points 17 to 19
37 to 40
Thermal Diffusivity, mm2/s 12
50
Thermal Shock Resistance, points 14 to 16
16 to 19

Alloy Composition

Aluminum (Al), % 0
88.9 to 95.2
Bismuth (Bi), % 0
0 to 0.2
Carbon (C), % 0.050 to 0.21
0
Chromium (Cr), % 0.5 to 0.8
0 to 0.1
Copper (Cu), % 0
3.3 to 4.5
Iron (Fe), % 97.1 to 98.3
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0
0.5 to 1.3
Manganese (Mn), % 0.55 to 0.8
0.2 to 1.0
Molybdenum (Mo), % 0.45 to 0.6
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.15 to 0.4
0 to 0.8
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3