MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 2 Steel vs. 7108A Aluminum

ASTM A387 grade 2 steel belongs to the iron alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 2 steel and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 25
11 to 13
Fatigue Strength, MPa 190 to 250
120 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 300 to 350
210
Tensile Strength: Ultimate (UTS), MPa 470 to 550
350
Tensile Strength: Yield (Proof), MPa 260 to 350
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 250
380
Maximum Temperature: Mechanical, °C 420
210
Melting Completion (Liquidus), °C 1470
630
Melting Onset (Solidus), °C 1420
520
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 45
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
36
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
10
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 1.6
8.3
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 50
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
610 to 640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 16 to 20
33 to 34
Strength to Weight: Bending, points 17 to 19
38
Thermal Diffusivity, mm2/s 12
59
Thermal Shock Resistance, points 14 to 16
15 to 16

Alloy Composition

Aluminum (Al), % 0
91.6 to 94.4
Carbon (C), % 0.050 to 0.21
0
Chromium (Cr), % 0.5 to 0.8
0 to 0.040
Copper (Cu), % 0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 97.1 to 98.3
0 to 0.3
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0.55 to 0.8
0 to 0.050
Molybdenum (Mo), % 0.45 to 0.6
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.15 to 0.4
0 to 0.2
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.030
Zinc (Zn), % 0
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15