MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 2 Steel vs. EN AC-47000 Aluminum

ASTM A387 grade 2 steel belongs to the iron alloys classification, while EN AC-47000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 2 steel and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140 to 170
60
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 25
1.7
Fatigue Strength, MPa 190 to 250
68
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 470 to 550
180
Tensile Strength: Yield (Proof), MPa 260 to 350
97

Thermal Properties

Latent Heat of Fusion, J/g 250
570
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1470
590
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 45
130
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
33
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 2.6
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 1.6
7.7
Embodied Energy, MJ/kg 20
140
Embodied Water, L/kg 50
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
65
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 24
54
Strength to Weight: Axial, points 16 to 20
19
Strength to Weight: Bending, points 17 to 19
27
Thermal Diffusivity, mm2/s 12
55
Thermal Shock Resistance, points 14 to 16
8.3

Alloy Composition

Aluminum (Al), % 0
82.1 to 89.5
Carbon (C), % 0.050 to 0.21
0
Chromium (Cr), % 0.5 to 0.8
0 to 0.1
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 97.1 to 98.3
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0.55 to 0.8
0.050 to 0.55
Molybdenum (Mo), % 0.45 to 0.6
0
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0.15 to 0.4
10.5 to 13.5
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25