MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21 Steel vs. EN 1.7779 Steel

Both ASTM A387 grade 21 steel and EN 1.7779 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21 steel and the bottom bar is EN 1.7779 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
16
Fatigue Strength, MPa 160 to 250
430
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 310 to 370
500
Tensile Strength: Ultimate (UTS), MPa 500 to 590
810
Tensile Strength: Yield (Proof), MPa 230 to 350
660

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 480
470
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
4.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 23
41
Embodied Water, L/kg 62
64

Common Calculations

PREN (Pitting Resistance) 6.4
5.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 110
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
1150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18 to 21
29
Strength to Weight: Bending, points 18 to 20
25
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 14 to 17
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0.050 to 0.15
0.17 to 0.23
Chromium (Cr), % 2.8 to 3.3
3.0 to 3.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 94.4 to 96
93.8 to 95.4
Manganese (Mn), % 0.3 to 0.6
0.3 to 0.5
Molybdenum (Mo), % 0.9 to 1.1
0.5 to 0.6
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0 to 0.025
0 to 0.010
Vanadium (V), % 0
0.45 to 0.55