MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21 Steel vs. EN 1.8201 Steel

Both ASTM A387 grade 21 steel and EN 1.8201 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21 steel and the bottom bar is EN 1.8201 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
20
Fatigue Strength, MPa 160 to 250
310
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
74
Shear Strength, MPa 310 to 370
390
Tensile Strength: Ultimate (UTS), MPa 500 to 590
630
Tensile Strength: Yield (Proof), MPa 230 to 350
450

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 480
450
Melting Completion (Liquidus), °C 1470
1500
Melting Onset (Solidus), °C 1430
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 41
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
7.0
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.8
2.5
Embodied Energy, MJ/kg 23
36
Embodied Water, L/kg 62
59

Common Calculations

PREN (Pitting Resistance) 6.4
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
530
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18 to 21
22
Strength to Weight: Bending, points 18 to 20
20
Thermal Diffusivity, mm2/s 11
11
Thermal Shock Resistance, points 14 to 17
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0.050 to 0.15
0.040 to 0.1
Chromium (Cr), % 2.8 to 3.3
1.9 to 2.6
Iron (Fe), % 94.4 to 96
93.6 to 96.2
Manganese (Mn), % 0.3 to 0.6
0.1 to 0.6
Molybdenum (Mo), % 0.9 to 1.1
0.050 to 0.3
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3