MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21 Steel vs. CC382H Copper-nickel

ASTM A387 grade 21 steel belongs to the iron alloys classification, while CC382H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21 steel and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
130
Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 21
20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
53
Tensile Strength: Ultimate (UTS), MPa 500 to 590
490
Tensile Strength: Yield (Proof), MPa 230 to 350
290

Thermal Properties

Latent Heat of Fusion, J/g 260
240
Maximum Temperature: Mechanical, °C 480
260
Melting Completion (Liquidus), °C 1470
1180
Melting Onset (Solidus), °C 1430
1120
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 41
30
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
41
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.8
5.2
Embodied Energy, MJ/kg 23
76
Embodied Water, L/kg 62
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 110
85
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
290
Stiffness to Weight: Axial, points 13
8.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18 to 21
15
Strength to Weight: Bending, points 18 to 20
16
Thermal Diffusivity, mm2/s 11
8.2
Thermal Shock Resistance, points 14 to 17
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0.050 to 0.15
0 to 0.030
Chromium (Cr), % 2.8 to 3.3
1.5 to 2.0
Copper (Cu), % 0
62.8 to 68.4
Iron (Fe), % 94.4 to 96
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0.3 to 0.6
0.5 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
29 to 32
Phosphorus (P), % 0 to 0.025
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.5
0.15 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15