MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21 Steel vs. CC767S Brass

ASTM A387 grade 21 steel belongs to the iron alloys classification, while CC767S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21 steel and the bottom bar is CC767S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
86
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
34
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 500 to 590
430
Tensile Strength: Yield (Proof), MPa 230 to 350
150

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Maximum Temperature: Mechanical, °C 480
120
Melting Completion (Liquidus), °C 1470
840
Melting Onset (Solidus), °C 1430
790
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
32
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
36

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.8
2.7
Embodied Energy, MJ/kg 23
47
Embodied Water, L/kg 62
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
100
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18 to 21
15
Strength to Weight: Bending, points 18 to 20
16
Thermal Diffusivity, mm2/s 11
34
Thermal Shock Resistance, points 14 to 17
14

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.8
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0
58 to 64
Iron (Fe), % 94.4 to 96
0 to 0.5
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0.3 to 0.6
0 to 0.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
32.8 to 41.9