MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21 Steel vs. Grade 18 Titanium

ASTM A387 grade 21 steel belongs to the iron alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21 steel and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
11 to 17
Fatigue Strength, MPa 160 to 250
330 to 480
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
40
Shear Strength, MPa 310 to 370
420 to 590
Tensile Strength: Ultimate (UTS), MPa 500 to 590
690 to 980
Tensile Strength: Yield (Proof), MPa 230 to 350
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 480
330
Melting Completion (Liquidus), °C 1470
1640
Melting Onset (Solidus), °C 1430
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 41
8.3
Thermal Expansion, µm/m-K 13
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.8
41
Embodied Energy, MJ/kg 23
670
Embodied Water, L/kg 62
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 110
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
1380 to 3110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 18 to 21
43 to 61
Strength to Weight: Bending, points 18 to 20
39 to 49
Thermal Diffusivity, mm2/s 11
3.4
Thermal Shock Resistance, points 14 to 17
47 to 67

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0.050 to 0.15
0 to 0.080
Chromium (Cr), % 2.8 to 3.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 94.4 to 96
0 to 0.25
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4

Comparable Variants