MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21 Steel vs. C19700 Copper

ASTM A387 grade 21 steel belongs to the iron alloys classification, while C19700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21 steel and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
2.4 to 13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 310 to 370
240 to 300
Tensile Strength: Ultimate (UTS), MPa 500 to 590
400 to 530
Tensile Strength: Yield (Proof), MPa 230 to 350
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 480
200
Melting Completion (Liquidus), °C 1470
1090
Melting Onset (Solidus), °C 1430
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
250
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
30
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.8
2.6
Embodied Energy, MJ/kg 23
41
Embodied Water, L/kg 62
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 110
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
460 to 1160
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18 to 21
12 to 16
Strength to Weight: Bending, points 18 to 20
14 to 16
Thermal Diffusivity, mm2/s 11
73
Thermal Shock Resistance, points 14 to 17
14 to 19

Alloy Composition

Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 2.8 to 3.3
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
97.4 to 99.59
Iron (Fe), % 94.4 to 96
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0.3 to 0.6
0 to 0.050
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.025
0.1 to 0.4
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2