MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21 Steel vs. C65500 Bronze

ASTM A387 grade 21 steel belongs to the iron alloys classification, while C65500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21 steel and the bottom bar is C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
4.0 to 70
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 310 to 370
260 to 440
Tensile Strength: Ultimate (UTS), MPa 500 to 590
360 to 760
Tensile Strength: Yield (Proof), MPa 230 to 350
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 260
260
Maximum Temperature: Mechanical, °C 480
200
Melting Completion (Liquidus), °C 1470
1030
Melting Onset (Solidus), °C 1430
970
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 41
36
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
29
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 1.8
2.7
Embodied Energy, MJ/kg 23
42
Embodied Water, L/kg 62
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 110
11 to 450
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
62 to 790
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18 to 21
12 to 24
Strength to Weight: Bending, points 18 to 20
13 to 21
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 14 to 17
12 to 26

Alloy Composition

Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0
91.5 to 96.7
Iron (Fe), % 94.4 to 96
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0.5 to 1.3
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
2.8 to 3.8
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5