MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21 Steel vs. C70600 Copper-nickel

ASTM A387 grade 21 steel belongs to the iron alloys classification, while C70600 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21 steel and the bottom bar is C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
3.0 to 34
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
46
Shear Strength, MPa 310 to 370
190 to 330
Tensile Strength: Ultimate (UTS), MPa 500 to 590
290 to 570
Tensile Strength: Yield (Proof), MPa 230 to 350
63 to 270

Thermal Properties

Latent Heat of Fusion, J/g 260
220
Maximum Temperature: Mechanical, °C 480
220
Melting Completion (Liquidus), °C 1470
1150
Melting Onset (Solidus), °C 1430
1100
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
44
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
33
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.8
3.4
Embodied Energy, MJ/kg 23
51
Embodied Water, L/kg 62
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 110
6.5 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
16 to 290
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18 to 21
9.1 to 18
Strength to Weight: Bending, points 18 to 20
11 to 17
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 14 to 17
9.8 to 19

Alloy Composition

Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0
84.7 to 90
Iron (Fe), % 94.4 to 96
1.0 to 1.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
9.0 to 11
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5