MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21 Steel vs. C72700 Copper-nickel

ASTM A387 grade 21 steel belongs to the iron alloys classification, while C72700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21 steel and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 21
4.0 to 36
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
44
Shear Strength, MPa 310 to 370
310 to 620
Tensile Strength: Ultimate (UTS), MPa 500 to 590
460 to 1070
Tensile Strength: Yield (Proof), MPa 230 to 350
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 480
200
Melting Completion (Liquidus), °C 1470
1100
Melting Onset (Solidus), °C 1430
930
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 41
54
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
11

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
36
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.8
4.0
Embodied Energy, MJ/kg 23
62
Embodied Water, L/kg 62
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 110
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
1420 to 4770
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18 to 21
14 to 34
Strength to Weight: Bending, points 18 to 20
15 to 26
Thermal Diffusivity, mm2/s 11
16
Thermal Shock Resistance, points 14 to 17
16 to 38

Alloy Composition

Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0
82.1 to 86
Iron (Fe), % 94.4 to 96
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0.3 to 0.6
0.050 to 0.3
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3