MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21L Class 1 vs. EN 1.4621 Stainless Steel

Both ASTM A387 grade 21L class 1 and EN 1.4621 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21L class 1 and the bottom bar is EN 1.4621 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
25
Fatigue Strength, MPa 160
190
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
78
Shear Strength, MPa 310
320
Tensile Strength: Ultimate (UTS), MPa 500
500
Tensile Strength: Yield (Proof), MPa 230
270

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 480
970
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
21
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
14
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 23
41
Embodied Water, L/kg 62
140

Common Calculations

PREN (Pitting Resistance) 6.4
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 11
5.7
Thermal Shock Resistance, points 14
17

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 2.8 to 3.3
20 to 21.5
Copper (Cu), % 0
0.1 to 1.0
Iron (Fe), % 94.4 to 96.1
74.4 to 79.7
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.015