MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21L Class 1 vs. C15900 Copper

ASTM A387 grade 21L class 1 belongs to the iron alloys classification, while C15900 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21L class 1 and the bottom bar is C15900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
6.5
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Shear Strength, MPa 310
420
Tensile Strength: Ultimate (UTS), MPa 500
720
Tensile Strength: Yield (Proof), MPa 230
240

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 480
200
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1430
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
280
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
48
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
49

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
30
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.8
2.8
Embodied Energy, MJ/kg 23
45
Embodied Water, L/kg 62
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
37
Resilience: Unit (Modulus of Resilience), kJ/m3 140
260
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18
23
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 11
80
Thermal Shock Resistance, points 14
26

Alloy Composition

Aluminum (Al), % 0
0.76 to 0.84
Carbon (C), % 0 to 0.1
0.27 to 0.33
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0
97.5 to 97.9
Iron (Fe), % 94.4 to 96.1
0 to 0.040
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Oxygen (O), % 0
0.4 to 0.54
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0.66 to 0.74