MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21L Class 1 vs. C42200 Brass

ASTM A387 grade 21L class 1 belongs to the iron alloys classification, while C42200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21L class 1 and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
2.0 to 46
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
42
Shear Strength, MPa 310
210 to 350
Tensile Strength: Ultimate (UTS), MPa 500
300 to 610
Tensile Strength: Yield (Proof), MPa 230
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Maximum Temperature: Mechanical, °C 480
170
Melting Completion (Liquidus), °C 1470
1040
Melting Onset (Solidus), °C 1430
1020
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 41
130
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
31
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
32

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
29
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 1.8
2.7
Embodied Energy, MJ/kg 23
44
Embodied Water, L/kg 62
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
49 to 1460
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 18
9.5 to 19
Strength to Weight: Bending, points 18
11 to 18
Thermal Diffusivity, mm2/s 11
39
Thermal Shock Resistance, points 14
10 to 21

Alloy Composition

Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 94.4 to 96.1
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0 to 0.35
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.8 to 1.4
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5