MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21L Class 1 vs. C67300 Bronze

ASTM A387 grade 21L class 1 belongs to the iron alloys classification, while C67300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21L class 1 and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
12
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
41
Shear Strength, MPa 310
300
Tensile Strength: Ultimate (UTS), MPa 500
500
Tensile Strength: Yield (Proof), MPa 230
340

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Maximum Temperature: Mechanical, °C 480
130
Melting Completion (Liquidus), °C 1470
870
Melting Onset (Solidus), °C 1430
830
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 41
95
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
22
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
25

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.8
2.7
Embodied Energy, MJ/kg 23
46
Embodied Water, L/kg 62
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
55
Resilience: Unit (Modulus of Resilience), kJ/m3 140
550
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 11
30
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0
58 to 63
Iron (Fe), % 94.4 to 96.1
0 to 0.5
Lead (Pb), % 0
0.4 to 3.0
Manganese (Mn), % 0.3 to 0.6
2.0 to 3.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0.5 to 1.5
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
27.2 to 39.1
Residuals, % 0
0 to 0.5