MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21L Class 1 vs. C72150 Copper-nickel

ASTM A387 grade 21L class 1 belongs to the iron alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21L class 1 and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
99
Elastic (Young's, Tensile) Modulus, GPa 190
150
Elongation at Break, % 21
29
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
55
Shear Strength, MPa 310
320
Tensile Strength: Ultimate (UTS), MPa 500
490
Tensile Strength: Yield (Proof), MPa 230
210

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 480
600
Melting Completion (Liquidus), °C 1470
1210
Melting Onset (Solidus), °C 1430
1250
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 41
22
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
45
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.8
6.1
Embodied Energy, MJ/kg 23
88
Embodied Water, L/kg 62
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
150
Stiffness to Weight: Axial, points 13
9.1
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18
15
Strength to Weight: Bending, points 18
15
Thermal Diffusivity, mm2/s 11
6.0
Thermal Shock Resistance, points 14
18

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.1
Chromium (Cr), % 2.8 to 3.3
0
Copper (Cu), % 0
52.5 to 57
Iron (Fe), % 94.4 to 96.1
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0 to 0.050
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
43 to 46
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5