MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 21L Class 1 vs. S17400 Stainless Steel

Both ASTM A387 grade 21L class 1 and S17400 stainless steel are iron alloys. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 21L class 1 and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
11 to 21
Fatigue Strength, MPa 160
380 to 670
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
75
Shear Strength, MPa 310
570 to 830
Tensile Strength: Ultimate (UTS), MPa 500
910 to 1390
Tensile Strength: Yield (Proof), MPa 230
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 260
280
Maximum Temperature: Mechanical, °C 480
850
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 41
17
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.6
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.1
14
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.8
2.7
Embodied Energy, MJ/kg 23
39
Embodied Water, L/kg 62
130

Common Calculations

PREN (Pitting Resistance) 6.4
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 140
880 to 4060
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
32 to 49
Strength to Weight: Bending, points 18
27 to 35
Thermal Diffusivity, mm2/s 11
4.5
Thermal Shock Resistance, points 14
30 to 46

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 2.8 to 3.3
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 94.4 to 96.1
70.4 to 78.9
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030