MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22 Steel vs. Grade C-5 Titanium

ASTM A387 grade 22 steel belongs to the iron alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22 steel and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
310
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 21
6.7
Fatigue Strength, MPa 160 to 240
510
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 480 to 600
1000
Tensile Strength: Yield (Proof), MPa 230 to 350
940

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 460
340
Melting Completion (Liquidus), °C 1470
1610
Melting Onset (Solidus), °C 1430
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 40
7.1
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 1.7
38
Embodied Energy, MJ/kg 23
610
Embodied Water, L/kg 58
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 110
66
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
4200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 17 to 21
63
Strength to Weight: Bending, points 17 to 20
50
Thermal Diffusivity, mm2/s 11
2.9
Thermal Shock Resistance, points 14 to 17
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0.050 to 0.15
0 to 0.1
Chromium (Cr), % 2.0 to 2.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 95.1 to 96.8
0 to 0.4
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4