MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22 Steel vs. C84500 Brass

ASTM A387 grade 22 steel belongs to the iron alloys classification, while C84500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22 steel and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
55
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 21
28
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
39
Tensile Strength: Ultimate (UTS), MPa 480 to 600
240
Tensile Strength: Yield (Proof), MPa 230 to 350
97

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Maximum Temperature: Mechanical, °C 460
150
Melting Completion (Liquidus), °C 1470
980
Melting Onset (Solidus), °C 1430
840
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 40
72
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
16
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
28
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.7
2.9
Embodied Energy, MJ/kg 23
47
Embodied Water, L/kg 58
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 110
54
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
45
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 17 to 21
7.7
Strength to Weight: Bending, points 17 to 20
9.8
Thermal Diffusivity, mm2/s 11
23
Thermal Shock Resistance, points 14 to 17
8.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0
77 to 79
Iron (Fe), % 95.1 to 96.8
0 to 0.4
Lead (Pb), % 0
6.0 to 7.5
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.080
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
10 to 14
Residuals, % 0
0 to 0.7