MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22 Steel vs. C85900 Brass

ASTM A387 grade 22 steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22 steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
85
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 21
30
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 74
40
Tensile Strength: Ultimate (UTS), MPa 480 to 600
460
Tensile Strength: Yield (Proof), MPa 230 to 350
190

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 460
130
Melting Completion (Liquidus), °C 1470
830
Melting Onset (Solidus), °C 1430
790
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
89
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
28

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.7
2.9
Embodied Energy, MJ/kg 23
49
Embodied Water, L/kg 58
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
170
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17 to 21
16
Strength to Weight: Bending, points 17 to 20
17
Thermal Diffusivity, mm2/s 11
29
Thermal Shock Resistance, points 14 to 17
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 95.1 to 96.8
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0.3 to 0.6
0 to 0.010
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0 to 0.025
0 to 0.010
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.025
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7