MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22L Class 1 vs. 6013 Aluminum

ASTM A387 grade 22L class 1 belongs to the iron alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 22L class 1 and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 20
3.4 to 22
Fatigue Strength, MPa 160
98 to 140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Shear Strength, MPa 310
190 to 240
Tensile Strength: Ultimate (UTS), MPa 500
310 to 410
Tensile Strength: Yield (Proof), MPa 230
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Maximum Temperature: Mechanical, °C 460
160
Melting Completion (Liquidus), °C 1470
650
Melting Onset (Solidus), °C 1430
580
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 40
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
38
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
9.5
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 1.7
8.3
Embodied Energy, MJ/kg 23
150
Embodied Water, L/kg 58
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 140
200 to 900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 18
31 to 41
Strength to Weight: Bending, points 18
37 to 44
Thermal Diffusivity, mm2/s 11
60
Thermal Shock Resistance, points 14
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.8 to 97.8
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 2.0 to 2.5
0 to 0.1
Copper (Cu), % 0
0.6 to 1.1
Iron (Fe), % 95.2 to 96.8
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0.3 to 0.6
0.2 to 0.8
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0.6 to 1.0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15