MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22L Class 1 vs. EN 1.4507 Stainless Steel

Both ASTM A387 grade 22L class 1 and EN 1.4507 stainless steel are iron alloys. They have 65% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22L class 1 and the bottom bar is EN 1.4507 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
230
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
25
Fatigue Strength, MPa 160
410
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 74
80
Shear Strength, MPa 310
530
Tensile Strength: Ultimate (UTS), MPa 500
840
Tensile Strength: Yield (Proof), MPa 230
590

Thermal Properties

Latent Heat of Fusion, J/g 260
300
Maximum Temperature: Mechanical, °C 460
1100
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1430
1390
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
21
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
4.0
Embodied Energy, MJ/kg 23
55
Embodied Water, L/kg 58
180

Common Calculations

PREN (Pitting Resistance) 5.6
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140
850
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
30
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 14
23

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 2.0 to 2.5
24 to 26
Copper (Cu), % 0
1.0 to 2.5
Iron (Fe), % 95.2 to 96.8
56.4 to 65.8
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
3.0 to 4.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.7
Sulfur (S), % 0 to 0.025
0 to 0.015