MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22L Class 1 vs. EN 1.4516 Stainless Steel

Both ASTM A387 grade 22L class 1 and EN 1.4516 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22L class 1 and the bottom bar is EN 1.4516 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
23
Fatigue Strength, MPa 160
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Shear Strength, MPa 310
350
Tensile Strength: Ultimate (UTS), MPa 500
550
Tensile Strength: Yield (Proof), MPa 230
320

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 460
720
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
30
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.7
2.0
Embodied Energy, MJ/kg 23
28
Embodied Water, L/kg 58
97

Common Calculations

PREN (Pitting Resistance) 5.6
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 11
8.1
Thermal Shock Resistance, points 14
20

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 2.0 to 2.5
10.5 to 12.5
Iron (Fe), % 95.2 to 96.8
83.3 to 89
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.7
Sulfur (S), % 0 to 0.025
0 to 0.015
Titanium (Ti), % 0
0.050 to 0.35