MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22L Class 1 vs. CC332G Bronze

ASTM A387 grade 22L class 1 belongs to the iron alloys classification, while CC332G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22L class 1 and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
130
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
43
Tensile Strength: Ultimate (UTS), MPa 500
620
Tensile Strength: Yield (Proof), MPa 230
250

Thermal Properties

Latent Heat of Fusion, J/g 260
230
Maximum Temperature: Mechanical, °C 460
220
Melting Completion (Liquidus), °C 1470
1060
Melting Onset (Solidus), °C 1430
1010
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 40
45
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
29
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 1.7
3.4
Embodied Energy, MJ/kg 23
55
Embodied Water, L/kg 58
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
270
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 14
21

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 2.0 to 2.5
0
Copper (Cu), % 0
80 to 86
Iron (Fe), % 95.2 to 96.8
1.0 to 3.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0
1.5 to 4.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5