MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 22L Class 1 vs. C81400 Copper

ASTM A387 grade 22L class 1 belongs to the iron alloys classification, while C81400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 22L class 1 and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 20
11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 74
41
Tensile Strength: Ultimate (UTS), MPa 500
370
Tensile Strength: Yield (Proof), MPa 230
250

Thermal Properties

Latent Heat of Fusion, J/g 260
210
Maximum Temperature: Mechanical, °C 460
200
Melting Completion (Liquidus), °C 1470
1090
Melting Onset (Solidus), °C 1430
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 40
260
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.5
60
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
61

Otherwise Unclassified Properties

Base Metal Price, % relative 3.8
33
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.7
2.8
Embodied Energy, MJ/kg 23
45
Embodied Water, L/kg 58
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
36
Resilience: Unit (Modulus of Resilience), kJ/m3 140
260
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 18
11
Strength to Weight: Bending, points 18
13
Thermal Diffusivity, mm2/s 11
75
Thermal Shock Resistance, points 14
13

Alloy Composition

Beryllium (Be), % 0
0.020 to 0.1
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 2.0 to 2.5
0.6 to 1.0
Copper (Cu), % 0
98.4 to 99.38
Iron (Fe), % 95.2 to 96.8
0
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Residuals, % 0
0 to 0.5