MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 5 Steel vs. EN 1.0258 Steel

Both ASTM A387 grade 5 steel and EN 1.0258 steel are iron alloys. They have a moderately high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 5 steel and the bottom bar is EN 1.0258 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20 to 21
23
Fatigue Strength, MPa 160 to 240
200
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 310 to 380
310
Tensile Strength: Ultimate (UTS), MPa 500 to 600
490
Tensile Strength: Yield (Proof), MPa 230 to 350
290

Thermal Properties

Latent Heat of Fusion, J/g 260
250
Maximum Temperature: Mechanical, °C 510
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
2.1
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.7
1.5
Embodied Energy, MJ/kg 23
19
Embodied Water, L/kg 69
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
95
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18 to 21
17
Strength to Weight: Bending, points 18 to 20
18
Thermal Diffusivity, mm2/s 11
13
Thermal Shock Resistance, points 14 to 17
16

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.2
Chromium (Cr), % 4.0 to 6.0
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 92.1 to 95.3
96.9 to 100
Manganese (Mn), % 0.3 to 0.6
0 to 1.4
Molybdenum (Mo), % 0.45 to 0.65
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.025
0 to 0.020
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020