MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 5 Steel vs. EN 1.4374 Stainless Steel

Both ASTM A387 grade 5 steel and EN 1.4374 stainless steel are iron alloys. They have 72% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 5 steel and the bottom bar is EN 1.4374 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
230
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20 to 21
40
Fatigue Strength, MPa 160 to 240
340
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
77
Shear Strength, MPa 310 to 380
550
Tensile Strength: Ultimate (UTS), MPa 500 to 600
800
Tensile Strength: Yield (Proof), MPa 230 to 350
400

Thermal Properties

Latent Heat of Fusion, J/g 260
290
Maximum Temperature: Mechanical, °C 510
920
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
14
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.7
2.9
Embodied Energy, MJ/kg 23
42
Embodied Water, L/kg 69
150

Common Calculations

PREN (Pitting Resistance) 6.8
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
270
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
400
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18 to 21
29
Strength to Weight: Bending, points 18 to 20
25
Thermal Diffusivity, mm2/s 11
4.0
Thermal Shock Resistance, points 14 to 17
17

Alloy Composition

Carbon (C), % 0 to 0.15
0.050 to 0.1
Chromium (Cr), % 4.0 to 6.0
17.5 to 18.5
Copper (Cu), % 0
0 to 0.4
Iron (Fe), % 92.1 to 95.3
63.5 to 67.9
Manganese (Mn), % 0.3 to 0.6
9.0 to 10
Molybdenum (Mo), % 0.45 to 0.65
0 to 0.5
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.25 to 0.32
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.5
0.3 to 0.6
Sulfur (S), % 0 to 0.025
0 to 0.030