ASTM A387 Grade 5 Steel vs. Type 1 Niobium
ASTM A387 grade 5 steel belongs to the iron alloys classification, while Type 1 niobium belongs to the otherwise unclassified metals. There are 21 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.
For each property being compared, the top bar is ASTM A387 grade 5 steel and the bottom bar is Type 1 niobium.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 150 to 180 | |
79 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
110 |
Elongation at Break, % | 20 to 21 | |
29 |
Poisson's Ratio | 0.29 | |
0.4 |
Shear Modulus, GPa | 74 | |
38 |
Tensile Strength: Ultimate (UTS), MPa | 500 to 600 | |
140 |
Tensile Strength: Yield (Proof), MPa | 230 to 350 | |
82 |
Thermal Properties
Latent Heat of Fusion, J/g | 260 | |
320 |
Specific Heat Capacity, J/kg-K | 470 | |
270 |
Thermal Conductivity, W/m-K | 40 | |
52 |
Thermal Expansion, µm/m-K | 13 | |
7.3 |
Otherwise Unclassified Properties
Density, g/cm3 | 7.8 | |
8.6 |
Embodied Water, L/kg | 69 | |
160 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 83 to 110 | |
35 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 140 to 320 | |
32 |
Stiffness to Weight: Axial, points | 14 | |
6.8 |
Stiffness to Weight: Bending, points | 25 | |
18 |
Strength to Weight: Axial, points | 18 to 21 | |
4.6 |
Strength to Weight: Bending, points | 18 to 20 | |
7.1 |
Thermal Diffusivity, mm2/s | 11 | |
23 |
Thermal Shock Resistance, points | 14 to 17 | |
13 |
Alloy Composition
Carbon (C), % | 0 to 0.15 | |
0 to 0.010 |
Chromium (Cr), % | 4.0 to 6.0 | |
0 |
Hafnium (Hf), % | 0 | |
0 to 0.020 |
Hydrogen (H), % | 0 | |
0 to 0.0015 |
Iron (Fe), % | 92.1 to 95.3 | |
0 to 0.0050 |
Manganese (Mn), % | 0.3 to 0.6 | |
0 |
Molybdenum (Mo), % | 0.45 to 0.65 | |
0 to 0.010 |
Nickel (Ni), % | 0 | |
0 to 0.0050 |
Niobium (Nb), % | 0 | |
99.7 to 100 |
Nitrogen (N), % | 0 | |
0 to 0.010 |
Oxygen (O), % | 0 | |
0 to 0.015 |
Phosphorus (P), % | 0 to 0.025 | |
0 |
Silicon (Si), % | 0 to 0.5 | |
0 to 0.0050 |
Sulfur (S), % | 0 to 0.025 | |
0 |
Tantalum (Ta), % | 0 | |
0 to 0.1 |
Titanium (Ti), % | 0 | |
0 to 0.020 |
Tungsten (W), % | 0 | |
0 to 0.030 |
Zirconium (Zr), % | 0 | |
0 to 0.020 |