MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 5 Steel vs. C31400 Bronze

ASTM A387 grade 5 steel belongs to the iron alloys classification, while C31400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 5 steel and the bottom bar is C31400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 21
6.8 to 29
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
42
Shear Strength, MPa 310 to 380
180 to 240
Tensile Strength: Ultimate (UTS), MPa 500 to 600
270 to 420
Tensile Strength: Yield (Proof), MPa 230 to 350
78 to 310

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Maximum Temperature: Mechanical, °C 510
180
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
180
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
42
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
43

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
29
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 1.7
2.6
Embodied Energy, MJ/kg 23
42
Embodied Water, L/kg 69
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
26 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
28 to 420
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18 to 21
8.7 to 13
Strength to Weight: Bending, points 18 to 20
11 to 14
Thermal Diffusivity, mm2/s 11
54
Thermal Shock Resistance, points 14 to 17
9.6 to 15

Alloy Composition

Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
87.5 to 90.5
Iron (Fe), % 92.1 to 95.3
0 to 0.1
Lead (Pb), % 0
1.3 to 2.5
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
0 to 0.7
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
5.8 to 11.2
Residuals, % 0
0 to 0.4