MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 5 Steel vs. C83400 Brass

ASTM A387 grade 5 steel belongs to the iron alloys classification, while C83400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 5 steel and the bottom bar is C83400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 21
30
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
42
Tensile Strength: Ultimate (UTS), MPa 500 to 600
240
Tensile Strength: Yield (Proof), MPa 230 to 350
69

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Maximum Temperature: Mechanical, °C 510
180
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
1020
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 40
190
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
44
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
46

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 1.7
2.7
Embodied Energy, MJ/kg 23
43
Embodied Water, L/kg 69
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
55
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
21
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18 to 21
7.7
Strength to Weight: Bending, points 18 to 20
9.9
Thermal Diffusivity, mm2/s 11
57
Thermal Shock Resistance, points 14 to 17
8.4

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
88 to 92
Iron (Fe), % 92.1 to 95.3
0 to 0.25
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.025
0 to 0.080
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
8.0 to 12
Residuals, % 0
0 to 0.7