MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 5 Steel vs. C99750 Brass

ASTM A387 grade 5 steel belongs to the iron alloys classification, while C99750 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 5 steel and the bottom bar is C99750 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
110 to 120
Elastic (Young's, Tensile) Modulus, GPa 190
130
Elongation at Break, % 20 to 21
20 to 30
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
48
Tensile Strength: Ultimate (UTS), MPa 500 to 600
450 to 520
Tensile Strength: Yield (Proof), MPa 230 to 350
220 to 280

Thermal Properties

Latent Heat of Fusion, J/g 260
200
Maximum Temperature: Mechanical, °C 510
160
Melting Completion (Liquidus), °C 1460
840
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.2
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 4.3
23
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 1.7
3.1
Embodied Energy, MJ/kg 23
51
Embodied Water, L/kg 69
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 320
190 to 300
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 25
21
Strength to Weight: Axial, points 18 to 21
15 to 18
Strength to Weight: Bending, points 18 to 20
16 to 18
Thermal Shock Resistance, points 14 to 17
13 to 15

Alloy Composition

Aluminum (Al), % 0
0.25 to 3.0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 4.0 to 6.0
0
Copper (Cu), % 0
55 to 61
Iron (Fe), % 92.1 to 95.3
0 to 1.0
Lead (Pb), % 0
0.5 to 2.5
Manganese (Mn), % 0.3 to 0.6
17 to 23
Molybdenum (Mo), % 0.45 to 0.65
0
Nickel (Ni), % 0
0 to 5.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
17 to 23
Residuals, % 0
0 to 0.3