MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. 2117 Aluminum

ASTM A387 grade 9 steel belongs to the iron alloys classification, while 2117 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is 2117 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
70
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 20 to 21
26
Fatigue Strength, MPa 160 to 240
95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Shear Strength, MPa 310 to 380
200
Tensile Strength: Ultimate (UTS), MPa 500 to 600
300
Tensile Strength: Yield (Proof), MPa 230 to 350
170

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 600
220
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 26
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 10
120

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
10
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.1
8.2
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 87
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
64
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 18 to 21
28
Strength to Weight: Bending, points 18 to 20
33
Thermal Diffusivity, mm2/s 6.9
59
Thermal Shock Resistance, points 14 to 17
12

Alloy Composition

Aluminum (Al), % 0
91 to 97.6
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 8.0 to 10
0 to 0.1
Copper (Cu), % 0
2.2 to 4.5
Iron (Fe), % 87.1 to 90.8
0 to 0.7
Magnesium (Mg), % 0
0.2 to 1.0
Manganese (Mn), % 0.3 to 0.6
0.4 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0.2 to 0.8
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.25
Vanadium (V), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15