MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. 6018 Aluminum

ASTM A387 grade 9 steel belongs to the iron alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 20 to 21
9.0 to 9.1
Fatigue Strength, MPa 160 to 240
85 to 89
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 310 to 380
170 to 180
Tensile Strength: Ultimate (UTS), MPa 500 to 600
290 to 300
Tensile Strength: Yield (Proof), MPa 230 to 350
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 600
160
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 26
170
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
44
Electrical Conductivity: Equal Weight (Specific), % IACS 10
140

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.1
8.2
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 87
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
360 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 18 to 21
28 to 29
Strength to Weight: Bending, points 18 to 20
34 to 35
Thermal Diffusivity, mm2/s 6.9
65
Thermal Shock Resistance, points 14 to 17
13

Alloy Composition

Aluminum (Al), % 0
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 8.0 to 10
0 to 0.1
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 87.1 to 90.8
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0.3 to 0.6
0.3 to 0.8
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0.5 to 1.2
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15