MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. 6066 Aluminum

ASTM A387 grade 9 steel belongs to the iron alloys classification, while 6066 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is 6066 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 20 to 21
7.8 to 17
Fatigue Strength, MPa 160 to 240
94 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 310 to 380
95 to 240
Tensile Strength: Ultimate (UTS), MPa 500 to 600
160 to 400
Tensile Strength: Yield (Proof), MPa 230 to 350
93 to 360

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 26
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 10
130

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 2.1
8.3
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 87
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
23 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
61 to 920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 18 to 21
16 to 39
Strength to Weight: Bending, points 18 to 20
23 to 43
Thermal Diffusivity, mm2/s 6.9
61
Thermal Shock Resistance, points 14 to 17
6.9 to 17

Alloy Composition

Aluminum (Al), % 0
93 to 97
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 8.0 to 10
0 to 0.4
Copper (Cu), % 0
0.7 to 1.2
Iron (Fe), % 87.1 to 90.8
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0.3 to 0.6
0.6 to 1.1
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0.9 to 1.8
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.040
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants