MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. 7129 Aluminum

ASTM A387 grade 9 steel belongs to the iron alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 20 to 21
9.0 to 9.1
Fatigue Strength, MPa 160 to 240
150 to 190
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 310 to 380
250 to 260
Tensile Strength: Ultimate (UTS), MPa 500 to 600
430
Tensile Strength: Yield (Proof), MPa 230 to 350
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 270
380
Maximum Temperature: Mechanical, °C 600
180
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1410
510
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 26
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
40
Electrical Conductivity: Equal Weight (Specific), % IACS 10
120

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.1
8.3
Embodied Energy, MJ/kg 28
150
Embodied Water, L/kg 87
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
1050 to 1090
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 18 to 21
41
Strength to Weight: Bending, points 18 to 20
43 to 44
Thermal Diffusivity, mm2/s 6.9
58
Thermal Shock Resistance, points 14 to 17
19

Alloy Composition

Aluminum (Al), % 0
91 to 94
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 8.0 to 10
0 to 0.1
Copper (Cu), % 0
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 87.1 to 90.8
0 to 0.3
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 0.3 to 0.6
0 to 0.1
Molybdenum (Mo), % 0.9 to 1.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0 to 0.040
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15