MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. ACI-ASTM CF8M Steel

Both ASTM A387 grade 9 steel and ACI-ASTM CF8M steel are iron alloys. They have 77% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is ACI-ASTM CF8M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20 to 21
50
Fatigue Strength, MPa 160 to 240
280
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
78
Tensile Strength: Ultimate (UTS), MPa 500 to 600
540
Tensile Strength: Yield (Proof), MPa 230 to 350
290

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
1000
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
19
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.1
3.8
Embodied Energy, MJ/kg 28
53
Embodied Water, L/kg 87
160

Common Calculations

PREN (Pitting Resistance) 12
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
230
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18 to 21
19
Strength to Weight: Bending, points 18 to 20
19
Thermal Diffusivity, mm2/s 6.9
4.3
Thermal Shock Resistance, points 14 to 17
12

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 8.0 to 10
18 to 21
Iron (Fe), % 87.1 to 90.8
60.3 to 71
Manganese (Mn), % 0.3 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.9 to 1.1
2.0 to 3.0
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 2.0
Sulfur (S), % 0 to 0.025
0 to 0.040
Vanadium (V), % 0 to 0.040
0