ASTM A387 Grade 9 Steel vs. AISI 410 Stainless Steel
Both ASTM A387 grade 9 steel and AISI 410 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is AISI 410 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 150 to 180 | |
190 to 240 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 20 to 21 | |
16 to 22 |
Fatigue Strength, MPa | 160 to 240 | |
190 to 350 |
Poisson's Ratio | 0.28 | |
0.28 |
Shear Modulus, GPa | 75 | |
76 |
Shear Strength, MPa | 310 to 380 | |
330 to 470 |
Tensile Strength: Ultimate (UTS), MPa | 500 to 600 | |
520 to 770 |
Tensile Strength: Yield (Proof), MPa | 230 to 350 | |
290 to 580 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
270 |
Maximum Temperature: Mechanical, °C | 600 | |
710 |
Melting Completion (Liquidus), °C | 1460 | |
1530 |
Melting Onset (Solidus), °C | 1410 | |
1480 |
Specific Heat Capacity, J/kg-K | 470 | |
480 |
Thermal Conductivity, W/m-K | 26 | |
30 |
Thermal Expansion, µm/m-K | 13 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 9.0 | |
2.9 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 10 | |
3.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 6.5 | |
7.0 |
Density, g/cm3 | 7.8 | |
7.7 |
Embodied Carbon, kg CO2/kg material | 2.1 | |
1.9 |
Embodied Energy, MJ/kg | 28 | |
27 |
Embodied Water, L/kg | 87 | |
100 |
Common Calculations
PREN (Pitting Resistance) | 12 | |
13 |
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 83 to 110 | |
97 to 110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 140 to 310 | |
210 to 860 |
Stiffness to Weight: Axial, points | 14 | |
14 |
Stiffness to Weight: Bending, points | 25 | |
25 |
Strength to Weight: Axial, points | 18 to 21 | |
19 to 28 |
Strength to Weight: Bending, points | 18 to 20 | |
19 to 24 |
Thermal Diffusivity, mm2/s | 6.9 | |
8.1 |
Thermal Shock Resistance, points | 14 to 17 | |
18 to 26 |
Alloy Composition
Carbon (C), % | 0 to 0.15 | |
0.080 to 0.15 |
Chromium (Cr), % | 8.0 to 10 | |
11.5 to 13.5 |
Iron (Fe), % | 87.1 to 90.8 | |
83.5 to 88.4 |
Manganese (Mn), % | 0.3 to 0.6 | |
0 to 1.0 |
Molybdenum (Mo), % | 0.9 to 1.1 | |
0 |
Nickel (Ni), % | 0 | |
0 to 0.75 |
Phosphorus (P), % | 0 to 0.025 | |
0 to 0.040 |
Silicon (Si), % | 0 to 1.0 | |
0 to 1.0 |
Sulfur (S), % | 0 to 0.025 | |
0 to 0.030 |
Vanadium (V), % | 0 to 0.040 | |
0 |