MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. EN 1.4655 Stainless Steel

Both ASTM A387 grade 9 steel and EN 1.4655 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20 to 21
23 to 25
Fatigue Strength, MPa 160 to 240
320
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
78
Shear Strength, MPa 310 to 380
460
Tensile Strength: Ultimate (UTS), MPa 500 to 600
720 to 730
Tensile Strength: Yield (Proof), MPa 230 to 350
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Mechanical, °C 600
1050
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
15
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.1
2.9
Embodied Energy, MJ/kg 28
41
Embodied Water, L/kg 87
160

Common Calculations

PREN (Pitting Resistance) 12
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
510 to 580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18 to 21
26
Strength to Weight: Bending, points 18 to 20
23
Thermal Diffusivity, mm2/s 6.9
4.0
Thermal Shock Resistance, points 14 to 17
20

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 8.0 to 10
22 to 24
Copper (Cu), % 0
1.0 to 3.0
Iron (Fe), % 87.1 to 90.8
63.6 to 73.4
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
0.1 to 0.6
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.015
Vanadium (V), % 0 to 0.040
0