MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. EN 1.4659 Stainless Steel

Both ASTM A387 grade 9 steel and EN 1.4659 stainless steel are iron alloys. They have 52% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is EN 1.4659 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
260
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 20 to 21
49
Fatigue Strength, MPa 160 to 240
460
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
81
Shear Strength, MPa 310 to 380
640
Tensile Strength: Ultimate (UTS), MPa 500 to 600
900
Tensile Strength: Yield (Proof), MPa 230 to 350
480

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Mechanical, °C 600
1100
Melting Completion (Liquidus), °C 1460
1480
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 26
12
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
37
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.1
6.5
Embodied Energy, MJ/kg 28
89
Embodied Water, L/kg 87
220

Common Calculations

PREN (Pitting Resistance) 12
54
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
370
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18 to 21
31
Strength to Weight: Bending, points 18 to 20
25
Thermal Diffusivity, mm2/s 6.9
3.2
Thermal Shock Resistance, points 14 to 17
19

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.020
Chromium (Cr), % 8.0 to 10
23 to 25
Copper (Cu), % 0
1.0 to 2.0
Iron (Fe), % 87.1 to 90.8
35.7 to 45.7
Manganese (Mn), % 0.3 to 0.6
2.0 to 4.0
Molybdenum (Mo), % 0.9 to 1.1
5.5 to 6.5
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.025
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0 to 0.040
0