MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. EN 1.4807 Stainless Steel

Both ASTM A387 grade 9 steel and EN 1.4807 stainless steel are iron alloys. They have 52% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is EN 1.4807 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20 to 21
4.5
Fatigue Strength, MPa 160 to 240
120
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
75
Tensile Strength: Ultimate (UTS), MPa 500 to 600
480
Tensile Strength: Yield (Proof), MPa 230 to 350
250

Thermal Properties

Latent Heat of Fusion, J/g 270
320
Maximum Temperature: Mechanical, °C 600
1000
Melting Completion (Liquidus), °C 1460
1390
Melting Onset (Solidus), °C 1410
1350
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
39
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.1
6.8
Embodied Energy, MJ/kg 28
97
Embodied Water, L/kg 87
190

Common Calculations

PREN (Pitting Resistance) 12
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
18
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18 to 21
17
Strength to Weight: Bending, points 18 to 20
17
Thermal Diffusivity, mm2/s 6.9
3.2
Thermal Shock Resistance, points 14 to 17
12

Alloy Composition

Carbon (C), % 0 to 0.15
0.3 to 0.5
Chromium (Cr), % 8.0 to 10
17 to 20
Iron (Fe), % 87.1 to 90.8
36.6 to 46.7
Manganese (Mn), % 0.3 to 0.6
0 to 2.0
Molybdenum (Mo), % 0.9 to 1.1
0 to 0.5
Nickel (Ni), % 0
34 to 36
Niobium (Nb), % 0
1.0 to 1.8
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 1.0
1.0 to 2.5
Sulfur (S), % 0 to 0.025
0 to 0.030
Vanadium (V), % 0 to 0.040
0