MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. Grade 24 Titanium

ASTM A387 grade 9 steel belongs to the iron alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20 to 21
11
Fatigue Strength, MPa 160 to 240
550
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
40
Shear Strength, MPa 310 to 380
610
Tensile Strength: Ultimate (UTS), MPa 500 to 600
1010
Tensile Strength: Yield (Proof), MPa 230 to 350
940

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 600
340
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 26
7.1
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.0

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.1
43
Embodied Energy, MJ/kg 28
710
Embodied Water, L/kg 87
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
4160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 18 to 21
63
Strength to Weight: Bending, points 18 to 20
50
Thermal Diffusivity, mm2/s 6.9
2.9
Thermal Shock Resistance, points 14 to 17
72

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 8.0 to 10
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 87.1 to 90.8
0 to 0.4
Manganese (Mn), % 0.3 to 0.6
0
Molybdenum (Mo), % 0.9 to 1.1
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0 to 0.040
3.5 to 4.5
Residuals, % 0
0 to 0.4