MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 9 Steel vs. S13800 Stainless Steel

Both ASTM A387 grade 9 steel and S13800 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 9 steel and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150 to 180
290 to 480
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20 to 21
11 to 18
Fatigue Strength, MPa 160 to 240
410 to 870
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
77
Shear Strength, MPa 310 to 380
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 500 to 600
980 to 1730
Tensile Strength: Yield (Proof), MPa 230 to 350
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Mechanical, °C 600
810
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
16
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 10
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
15
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.1
3.4
Embodied Energy, MJ/kg 28
46
Embodied Water, L/kg 87
140

Common Calculations

PREN (Pitting Resistance) 12
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 83 to 110
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 310
1090 to 5490
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18 to 21
35 to 61
Strength to Weight: Bending, points 18 to 20
28 to 41
Thermal Diffusivity, mm2/s 6.9
4.3
Thermal Shock Resistance, points 14 to 17
33 to 58

Alloy Composition

Aluminum (Al), % 0
0.9 to 1.4
Carbon (C), % 0 to 0.15
0 to 0.050
Chromium (Cr), % 8.0 to 10
12.3 to 13.2
Iron (Fe), % 87.1 to 90.8
73.6 to 77.3
Manganese (Mn), % 0.3 to 0.6
0 to 0.2
Molybdenum (Mo), % 0.9 to 1.1
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.025
0 to 0.010
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.025
0 to 0.0080
Vanadium (V), % 0 to 0.040
0