MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. 2018 Aluminum

ASTM A387 grade 91 class 2 belongs to the iron alloys classification, while 2018 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is 2018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
120
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 20
9.6
Fatigue Strength, MPa 330
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Shear Strength, MPa 420
270
Tensile Strength: Ultimate (UTS), MPa 670
420
Tensile Strength: Yield (Proof), MPa 470
310

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 600
220
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
510
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 26
150
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
40
Electrical Conductivity: Equal Weight (Specific), % IACS 10
120

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
11
Density, g/cm3 7.8
3.1
Embodied Carbon, kg CO2/kg material 2.6
8.1
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 88
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
37
Resilience: Unit (Modulus of Resilience), kJ/m3 580
670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 24
38
Strength to Weight: Bending, points 22
41
Thermal Diffusivity, mm2/s 6.9
57
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 0 to 0.020
89.7 to 94.4
Carbon (C), % 0.080 to 0.12
0
Chromium (Cr), % 8.0 to 9.5
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 87.3 to 90.3
0 to 1.0
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0.3 to 0.6
0 to 0.2
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
1.7 to 2.3
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.2 to 0.5
0 to 0.9
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.15