MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. 7175 Aluminum

ASTM A387 grade 91 class 2 belongs to the iron alloys classification, while 7175 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is 7175 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 20
3.8 to 5.9
Fatigue Strength, MPa 330
150 to 180
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
26
Shear Strength, MPa 420
290 to 330
Tensile Strength: Ultimate (UTS), MPa 670
520 to 570
Tensile Strength: Yield (Proof), MPa 470
430 to 490

Thermal Properties

Latent Heat of Fusion, J/g 270
380
Maximum Temperature: Mechanical, °C 600
180
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
480
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 26
140
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
33
Electrical Conductivity: Equal Weight (Specific), % IACS 10
99

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
10
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.2
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 88
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
18 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 580
1310 to 1730
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 24
48 to 52
Strength to Weight: Bending, points 22
48 to 51
Thermal Diffusivity, mm2/s 6.9
53
Thermal Shock Resistance, points 19
23 to 25

Alloy Composition

Aluminum (Al), % 0 to 0.020
88 to 91.4
Carbon (C), % 0.080 to 0.12
0
Chromium (Cr), % 8.0 to 9.5
0.18 to 0.28
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 87.3 to 90.3
0 to 0.2
Magnesium (Mg), % 0
2.1 to 2.9
Manganese (Mn), % 0.3 to 0.6
0 to 0.1
Molybdenum (Mo), % 0.85 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0.2 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.1
Vanadium (V), % 0.18 to 0.25
0
Zinc (Zn), % 0
5.1 to 6.1
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.15