MakeItFrom.com
Menu (ESC)

ASTM A387 Grade 91 Class 2 vs. AWS ER110S-1

Both ASTM A387 grade 91 class 2 and AWS ER110S-1 are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM A387 grade 91 class 2 and the bottom bar is AWS ER110S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
17
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 670
870
Tensile Strength: Yield (Proof), MPa 470
740

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 26
47
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 10
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
4.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 37
25
Embodied Water, L/kg 88
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140
Resilience: Unit (Modulus of Resilience), kJ/m3 580
1460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
31
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 6.9
13
Thermal Shock Resistance, points 19
26

Alloy Composition

Aluminum (Al), % 0 to 0.020
0 to 0.1
Carbon (C), % 0.080 to 0.12
0 to 0.090
Chromium (Cr), % 8.0 to 9.5
0 to 0.5
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 87.3 to 90.3
92.8 to 96.3
Manganese (Mn), % 0.3 to 0.6
1.4 to 1.8
Molybdenum (Mo), % 0.85 to 1.1
0.25 to 0.55
Nickel (Ni), % 0 to 0.4
1.9 to 2.6
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.030 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.010
Silicon (Si), % 0.2 to 0.5
0.2 to 0.55
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0 to 0.010
0 to 0.1
Vanadium (V), % 0.18 to 0.25
0 to 0.040
Zirconium (Zr), % 0 to 0.010
0 to 0.1
Residuals, % 0
0 to 0.5